Inexact descent methods for convex minimization problems in Banach spaces
نویسندگان
چکیده
منابع مشابه
Descent methods for convex optimization problems in Banach spaces
where f : E→ R is a convex function; see, for example, [1, 2, 8] and the references therein. It is well known that standard iterative methods for solving (1.2), which are designed for finite-dimensional optimization problems, cannot guarantee strong convergence of their iteration sequences to a solution of the initial problem if the cost function does not possess strengthened convexity properti...
متن کاملBundle Methods for Convex Minimization with Partially Inexact Oracles
Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles may save work by evaluating the dual function appr...
متن کاملMinimization of Nonsmooth Convex Functionals in Banach Spaces
We develop a uniied framework for convergence analysis of subgradient and subgradient projection methods for minimization of nonsmooth convex functionals in Banach spaces. The important novel features of our analysis are that we neither assume that the functional is uniformly or strongly convex, nor use regularization techniques. Moreover, no boundedness assumptions are made on the level sets o...
متن کاملInexact subgradient methods for quasi-convex optimization problems
In this paper, we consider a generic inexact subgradient algorithm to solve a nondifferentiable quasi-convex constrained optimization problem. The inexactness stems from computation errors and noise, which come from practical considerations and applications. Assuming that the computational errors and noise are deterministic and bounded, we study the effect of the inexactness on the subgradient ...
متن کاملIntermediate Gradient Methods for Smooth Convex Problems with Inexact Oracle
Between the robust but slow (primal or dual) gradient methods and the fast but sensitive to errors fast gradient methods, our goal in this paper is to develop first-order methods for smooth convex problems with intermediate speed and intermediate sensitivity to errors. We develop a general family of first-order methods, the Intermediate Gradient Method (IGM), based on two sequences of coefficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carpathian Journal of Mathematics
سال: 2020
ISSN: 1843-4401,1584-2851
DOI: 10.37193/cjm.2020.01.13